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Success of deep learning (DL) not hews anymore
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Robusthess issues of DL not hews anymore

Deep neural networks (DNNSs) are brilliant at image
recognition — but they can be easily hacked.

These stickers made an _ Speed limit 45
artificial-intelligence '
system read this stop

sign as ‘speed limit 45’.




Robustness issues across domains/tasks

‘ - -

man and Hindi. While exact results dlffer depend-
ing on language/datasets, our key findings from
these experiments can be summarized as follows:

"pdndu"

ubmitedon | 1 NER models for all three languages are sensi-

-A Multil tive to adversarial input. \dversarial
Inputs

Akshay Srir 2. Adversarial fine-tuning and re-training could
Name entry improve the performance of NER models both

Recogpnition Adversarig on original and adversarial test sets, without Weperformeda
multilingua o6 ddits ] [ labaledid 1all perturbations in the
PRI requiring additional manual labeled data. S

not very robust to such changes, as indicated by the fluctuations in the overall F1 score as well as in a more fine-
grained evaluation. With that knowledge, we further explored whether it is possible to improve the existing NER



Robustness issues across models

Abstract

Tutorial

Foundational Robustness of
Foundation Models

¢¢0¢ SdIinaN

Foundation models adopting the methodology of deep learning with pre-training on large-
scale unlabeled data and finetuning with task-specific supervision are becoming a
mainstream technique in machine learning. Although foundation models hold many
promises in learning general representations and few-shot/zero-shot generalization

across domains and data modalities, at the same time they raise unprecedented
challenges and considerable risks in robustness and privacy due to the use of the
excessive volume of data and complex neural network architectures. This tutorial aims to
deliver a Coursera-like online tutorial containing comprehensive lectures, a hands-on and

interactive Jupyter/Colab live coding demo, and a panel discussion on different aspects of
trustworthiness in foundation models. More information can be found at

https://sites.google.com/view/neurips2022-frfm-turotial

https://research.ibm.com/publications/foundational-robustness-of-foundation-models



https://research.ibm.com/publications/foundational-robustness-of-foundation-models

Two kinds of robustness

“panda” “gibbon”
57.7% confidence 99.3% confidence

credit: openai.com
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Other dimensions in trustworthy Al

Trustworthiness: robustness, fairness, explainability,

transparency
Uncertain Boundary Class“0”
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“Uncertain”

Boldness: able to
change predictions
when necessary



International concerns and priorities

Administration Priorities The Record

e New Standards for Al Safety and Security
e Protecting Americans' Privacy
. . e Advancing Equity and Civil Rights
FACT SHEET: President Biden Issues o sianding Up for Consumers, Patients,
Executive Order on Safe, Secure, and and Students
T u i ; e Supporting Workers
Trustworthy Artificial Intelhgence e Promoting Innovation and Competition
Eff » BRIEFING ROOM » STATEMENTS AND RELEASES PY AdvaﬂClﬂg Amencan Leadershlp Abroad

e Ensuring Responsible and Effective

Today, President Biden is issuing a landmark Executive Order to ensure that Govern meﬂt Use Of Al
America leads the way in seizing the promise and managing the risks of

artificial intelligence (AI). The Executive Order establishes new standards for

Al safety and security, protects Americans’ privacy, advances equity and civil

rights, stands up for consumers and workers, promotes innovation and

competition, advances American leadership around the world, and more.

https./www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe

-secure-and-trustworthy-artificial-intelligence/



https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/

Outline

e Evaluation of adversarial robustness

Optimization and Optimizers for Adversarial Robustness https.//arxiv.org/abs/2303.13401

e Fundamental challenges in evaluating & achieving robustness

Optimization and Optimizers for Adversarial Robustness https:.//arxiv.org/abs/2303.13401

e Selective prediction

Selective Classification Under Distribution Shifts (Forthcoming)

e Closing


https://arxiv.org/abs/2303.13401
https://arxiv.org/abs/2303.13401

Empirical robustness evaluation (RE)

“panda”

Allowable perturbation

decision boundary{'\j\b
minimal perturbation ball

actual perturbation ball

Maximize loss/error

max £ (y, fo(2'))

function

- i P

d(

xz,z') <e|, [z’ €]0,1]"

Valid image

Find robustness radius

rr;}i’n d(z,x')

2 7 1

i#

max fo(x') > f3 (')

|z’ €[0,1]"

On the decision boundary  Valid image

Report robust accuracy over an evaluation set



Constrained optimization problems

max £ (y, fo('))
s.t.|d(z,z') <e|, 2 €][0,1]"

Both objective and constraint
functions are nonconvex in general,
e.g., when containing DL models

n;:i’n d(z,x")

s.t.[max (@) > 3@, ' € [0, 11"
1FY




Projected gradient descent (PGD) for RE

Algorithm 1 APGD

max £ (y, fo(x'))

gt d(z;2') <&, ael01]” .
3;
min f(x Step size :
ey f(x) / P 451
Xia1 = Po (Xk = aka(xk)) 3
1 8:

Pg(x) = argmin =||x — xg||2 Projection operator
x€0 2 "
10;
11:
12:
Key hyperparameters: 1o
(1) step size .
(2) iteration number 16:
17:

Input: f, S, 2, n, Nier, W = {wo, ..., wn}
Output: Zpax, fmax
zM) « Pg (x(O) s an(ac(O)))
faax = max{f(z(@), f(«V)}
Tmax — O if froox = f(2(?) else ey — 20
for £k = 1 to Nj..—1do

2D  Pg (z%) + nV f(z®)))

z®+D)  Pg (:c(k) + a (28D — £k

+H{L- a)(e® —alt-1))
if f(z(**t1D) > fr.x then
Tmax — FTD and frax « f(z*D)
end if
if k. € W then
if Condition 1 or Condition 2 then
n < n/2 and z*tY) — z.
end if
end if
end for

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020



Problem with projected gradient descent

CIFAR-10 - € = 0.031

MNIST - € = 6.3

'CIFAR-10 - ¢ = 8/255

MNIST - € = 0.3

- -step=¢/100
- -step=¢/25
- -step=¢/10
- -step=¢/4
step=¢/2
step=e/1
step=2¢

loss

1
'
l
! L
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iterations

max £ (y, fo(z'))

s.t. d(z, ') <e, ' €]0,1]"

Tricky to set:

iteration number & step size
i.e., tricky to decide where to
stop

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020

https:/arxiv.org/pdf/2003.01690.pdf



https://arxiv.org/pdf/2003.01690.pdf

Penalty methods for complicated d

/
max £ (y, fo(z'))
* Algorithm 2 Lagrangian Perceptual Attack (LPA)

’ / n
s.t. d(z,2') <e, z' €[0,]1] 1: procedure LPA (classifier network f(-), LPIPS distance d(-, -), input x, label , bound ¢)
2; A+ 0.01
n - _ / 3: X+ x+0.01%AN(0,1) > initialize perturbations with random Gaussian noise
d(z,z') = |[¢(x) — o(z') |, perceptual 4 foriinl,...,Sdo > we use S = 5 iterations to search for the best value of A
where )= [a1(2)..... ar(x . 5: fortinl,..., T do > T' is the number of steps
¢( ) [ gl( )’ ? gL( ) ] distance 6: A + Vx [L(f(X),y) — Amax (0,d(X,x) — €)] > take the gradient of (5)
. . . . . T: A=A/|All > normalize the gradient
Projection onto the constraint is complicated . n=ex (0.7 b the step size 1) decays exponentially
9: m <+ d(X,x+ hA)/h  >m = derivative of d(X, -) in the direction of A; h = 0.1
10: X« X+ (n/m)A > take a step of size 1 in LPIPS distance
11: end for
pena[ty methods 12: if d(X,x) > € then
13: A+ 10A > increase A if the attack goes outside the bound
_ _ 14: end if
max L(f(X),y) — Amax (0, O(X) — p(x)||2 — 6) 15:  end for
X 16: X < PROJECT(d, X, X, €)
17: return X
H : 18:
Solve it for each fixed A and then increase A el

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C,, Singla, S., & Feizi, S. https:/arxiv.org/abs/2006.12655



https://arxiv.org/abs/2006.12655

Problem with penalty methods

cross-entropy loss margin loss

max £ (y, fo(z'))

gt d(z;2') <&, 2#elod]®

Method Viol. (%) | Att. Succ. (%) + Viol. (%) | Att. Succ. (%) 1

Fast-LPA 73.8 3.54 41.6 56.8

LPA 0.00 80.5 0.00 97.0 5 )

PPGD 5.44 25.5 0.00 38.5 d(z, ') = ||o(x) — d(x')]|,
where z)=|qx),...,9.(x

PWCF (ours)  0.62 93.6 0.00 100 (@) =[G(),... e (=) ]

LPA, Fast-LPA: penalty methods  PPGD: Projected gradient descent PWCF, an optimizer with
a principled stopping

Penalty methods tend to encounter criterion on stationarity
large constraint violation (i.e., infeasible solution, known in optimization & feasibility
theory) or suboptimal solution

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv.2303.13401.



Unreliable optimization = Unreliable RE



|Issues and answers

projected gradient descent penalty methods
xmeigf(x) m:gn f(x) s.t. g(x) <0
Xk+1 = PQ (Xk = Oszf(Xk)) m:gn f(iL‘) + )\max((), g(w))
Solved with increasing ), -sequence
Issue: no principled stopping criterion Issue: infeasible or suboptimal solution

/step size rules

e Feasible & stationary solution Stationarity and feasibility check: KKT

condition
e Reasonable speed Line search & 2nd order methods

e A hidden problem: nonsmoothness



A principled solver for GRA’SO

constrained, nonconvexy,
nonsmooth problems

Nonconvex, nonsmooth, constrained miQn f(x), st.ci(x) <0,VieZ; ci(x)=0,Viefl.
:Z:EL "

1
- \V T T “d"H
Penalty sequential quadratic programmir, deﬂgl,l ?GRP G @)+ V) d) +e s+ 2d ed

(P-SQP) st. cOx) +Ve)d<s, s>0,

Quasi-Newton methods (L-BFGS) — high-precision solution
Principled line search, stationarity/feasibility check

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.



Our PyGranso (and NCVX framework)

CRANJSO + O PyTorch

¢« s @ X
O PYGRANSO

NCVX PyGRANSO
Documentation

O N : né%f(x), sd.g(x) L0, Y€ L; ¢x) =0,Yic€&
Search the docs ... \ VX

Introduction

Home

Installation

Settings

_ NCVX Package First general-purpose solver for

constrained DL problems
NCVX: A General-Purpose Optimization Solver for

Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun h tt DS : //n CVX'O rg /



https://ncvx.org/

Strategies to speed up PyGranso for RE

max £ (y, fo(x")) min d (z,a’)
s.t. d(z,2')<e, ' €[0,1]" s.t. max fy(2') > fo(@') , 2’ €[0,1]"
Constraint folding: many Two-stage optimization

constraints into few
1. Stage 1 (selecting the best initialization): Op-

timize the problems by PWCF with R different ran-

h] (ZB) . O = |h] (CC) | S 0 s dom initialization z(™? for k iterations, where r =
1,..., R, and collect the final first-stage solution
C; (w) _<_ )<= nlaX{Ci (af). 0} S 0 s x(™*) for each run. Determine the best intermedi-

ate result **) following Algorithm 1.

2. Stage 2 (optimization): Warm start the optimiza-
.F( I hl (:l:) |, e, hz‘ (CC) ] nlaX{Cl (ZE). 0}, tion process with z** until the stopping criterion is
met] (i.e., reaching both the stationarity and feasi-

"y InaX{Cj (x). O}) S O, bility tolerance, or reaching the MaxIter K).




First general-purpose, reliable solver for RE

max £ (y, fo('))
gt dz:2") <8, a0l

Reliability

¢ SOTAmethods O Rorusbmc
No stopping criterion (only use
maxit); step size scheduler

o PWCF (ours)
Principled line-search rule and
termination criterion

n;:i’n d (z,x")

5.t max f5(@') > f3(@) , @' € 0,1]"
1FY

Generality

SOTA methods
Can mostly only handle several lp metrics (l1,12,linf)

PWCF (ours)

Any almost everywhere differentiable metrics and
both min and max forms
E.g., perceptual e ;
G P d(@,z') = |$(x) - s,

where o¢(x) = qi(x),...,g9(x) |



A quick example

max £ (y, fo(&) d(z, o) = |4(z) - ('),
s.t. d(z, @) <e, o €l0,1]" where ¢(x) =[g1(),...,gL() |
cross-entropy loss margin loss
Method Viol. (%) | Att. Succ. (%) 1+ Viol. (%) | Att. Succ. (%) 1
Fast-LPA 73.8 3.54 41.6 56.8
LPA 0.00 80.5 0.00 97.0
PPGD 5.44 25.5 0.00 38.5

PWCF (ours) 0.62 93.6 0.00 100




PyGranso has enabled much more

m%&n f(x), st.e(x) <0, Vi€ L; ¢i(x) =0,Vi €
xelRn

First general-purpose solver for constrained DL

problems

ra
6 LJ

{OPYyGRANSO

NCVX PyGRANSO
Documentation

Home

Search the docs ...

Introduction
Installation
Settings

NCVX Package

Examples

NCVX: A General-Purpose Optimization Solver for
Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun

& NCVX

9

Topology optimization

s.t. K(Gg(B))u = f.
Zz‘EQ[GG(IB)]i e e

minu’ K (Gg(8))u

0.1

Imbalanced learning

i S 1 {yi = +1} 1 {fo(z:) > t}
0.t Y, L{fe(ws) > t}
Sty Uy = +1} 1 {fo(ai) > 1} _
Zij\;l 1 {yi = +1} B

Constrained deep learning for the efficient discovery of stable solid-state materials
PIs: Chris Bartel (CEMS), Ju Sun (CS&E)

s. t.

Background

Machine/deep learning (MDL) has emerged as a novel tool in material science and engineering (MSE).!
MDL models in MSE can be broadly categorized as “property prediction models” (PPMs) or “interatomic
potentials” (IPs). For the former, the goal is to learn the mapping between material representations and
material properties (e.g., formation energy, band gap, etc.). These representations can be compositional,’
requiring only the chemical formula (e.g., Al:Os), or structural,’ requiring the formula and the 3D
arrangement of ions on a periodic lattice (e.g., ALOs in the corundum structure with specified coordinates
for Al and O). IPs make use of a structural representation, but instead of learning to predict a single property,
these models learn to predict the energies, forces, and stresses of an arbitrary configuration of ions on a

lattice 4 T1cina thic learnad interatamic madel _ane can nerfarm a cet af tacke and analyusec that are nenally



Outline

e Evaluation of adversarial robustness

Optimization and Optimizers for Adversarial Robustness https.//arxiv.org/abs/2303.13401

e Fundamental challenges in evaluating & achieving robustness

Optimization and Optimizers for Adversarial Robustness https:.//arxiv.org/abs/2303.13401

e Selective prediction

Selective Classification Under Distribution Shifts (Forthcoming)

e Closing


https://arxiv.org/abs/2303.13401
https://arxiv.org/abs/2303.13401

RE tractable even with PWCFEF?

max £ (y, fo(x'))

gt dEx") <8, aelo,l)”

decision boundaryt“}\‘
minimal perturbation ball

actual perturbation ball

Assuming 0-1 loss

Typical over-specification of g
means there are potentially
infinitely many solutions, with
different patterns



s the intuition right?

APGD PWCF

cross-entropy margin cross-entropy margin

Perturb.
Img.
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Measured by sparsity levels of the

] n ] n 7 l
|S the |ntU|t|On rlght. perturba“ons found
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decision boundary P
minimal perturbation ball

o max £ (y, fo('))
Implications - |

gt d(@2) <&, a0 NN
& (N L
We need to enumerate all possible N
solutions if we want reliable RE using /
max-form actual perturbation ball

Take-away: Max-form RE is fundamentally
intractable, unless a good € is set—whichis hard



max £ (y, fo('))

Implications - Il i\ Fza)<e, zecpi" | z/cA)
Adversarial training mein E(z,y)~D mgii )5 (y, fo(z))
x'cA(x

l.e., data augmentation with adversarial samples

We need to enumerate all possible patterns of
adversarial samples if we want to achieve robustness,
measured by the same d

Take-away: Adversarial training with the max-form
augmentation won't achieve robustness



Any hopes remaining?

decision boundary s N
minimal perturbation ball

actual perturbation ball

max £ (y, fo(z'))
s.t. d(z, ') <e, ' €]0,1]"

VS

mlndmaz

s. t. i fé(m') > fo(x'), ' €0,1]"
i#y

Take-away: the min-form
(robustness radius) is
more promising



Outline

e Evaluation of adversarial robustness

Optimization and Optimizers for Adversarial Robustness https.//arxiv.org/abs/2303.13401

e Fundamental challenges in evaluating & achieving robustness

Optimization and Optimizers for Adversarial Robustness https:.//arxiv.org/abs/2303.13401

e Selective prediction

Selective Classification Under Distribution Shifts (Forthcoming)

e Closing


https://arxiv.org/abs/2303.13401
https://arxiv.org/abs/2303.13401

We have a long way to go

Safe Learning-Enabled Systems

II\FORWARD

TRUSTWORTHY Al

THEORY « ENGINEERING « HUMAN CONTEXT

TRUSTWORTHY Al RESEARCH THRUSTS
DARPA experts estimate that research in the following areas will be essential to creating trustworthy
technology:

Foundational theory, to understand the art of the possible, bound the limits of particular
system instantiations, and inform guardrails for Al systems in challenging domains such as

national security;

* Al engineering, to predictably build systems that work as intended in the real world and not
justin the lab; and

* Human-Al teaming, to enable systems to serve as fluent, intuitive, trustworthy teammates to
people with various backgrounds.

https://www.darpa.mil/work-with-us/ai-forward

PROGRAM SOLICITATION
NSF 23-562

National Science Foundation

Directorate for Computer and Information Science and Engineering
Division of Information and Intelligent Systems
Division of Computing and Communication Foundations
Division of Computer and Network Systems

Open Philanthropy Project LLC

Good Ventures Foundation

Full Proposal Deadline(s) (due by 5 p.m. submitter's local time):

May 26, 2023

January 16, 2024

https://www.nsf.qgov/pubs/2023/nsf23562/nsf23562.htm



https://www.darpa.mil/work-with-us/ai-forward
https://www.nsf.gov/pubs/2023/nsf23562/nsf23562.htm

Imperfect Al models can still be deployed
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LEVELS OF DRIVING AUTOMATION

]

2

5

AUTOMATION

Manual control. The
human performs all
driving tasks (steering,
acceleration, braking,
etc.)

DRIVER
ASSISTANCE

The vehicle features a
single automated
system (e.g. it monitors
speed through cruise
control)

PARTIAL
AUTOMATION

ADAS. The vehicle can
perform steering and
acceleration. The
human still monitors all
tasks anc
control at any time

CONDITIONAL
AUTOMATION

Environmental detection
capabilities. The vehicle
can perform most
driving tasks, but
human override is still
required

HIGH
AUTOMATION

The vehicle performs all
tasks under

sp C circumstances
Geofencing is required
Human override is still
an option

FULL
AUTOMATION

The vehicle performs all
driving tasks under all
conditions. Zero human
attention or interaction
is required

THE HUMAN MONITORS THE DRIVING ENVIRONMENT

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT




A crucial component: allowing Al to restrain itself
predictor f : X — R®  selector g : X — {0, 1}

f@)  ifg(z) =1;

f9)(®) = abstain if g(x) = 0}

No prediction on uncertain samples and defer
them to humans

gy(x) = 1[s(zx) > ]

Typically, selection by thresholding prediction
confidence



1.0 ,
Risk-coverage tradeoff RC Curve

(f,9)(z) 2 {f(«’v) if g(z)

abstain if g(x)

Iz
0.

0.5

gy(x) = 1s(x) > ]

Selective Risk

(coverage) ¢, = Eplg, ()],

(selection risk) R, = Ep[l(f(x),y)g9,(x)]/ P~

Coverage
[ High-stakes corner




Which confidence score?

M components N components \

z € RX contains the raw logits (RLs)

S Rsx S max a2
(2

Input Layer adenLayen Ouputlaver S Raoctor = ([lo(2)ll; = 1)/llo(2)ll; = 1 = llo(2),/llo(2)]l5,

(e.g., convolutional, rectified lineatr, ...)
A 1 7
SRent - E iO’(Z )IOgO'(Z )’



z € RE contains the raw logits (RLs)

B Ut are th ey g OOd SCO reS? [ Scale factor applied to RLs ]

0.1 4.0 - 0.1 4.0 Q! 4.0
1::0 == Rlgeo-m 1.0 == Rlgeo-m 1.0 Spost
2.0 e 2.0 Soost 2.0 «- Rlgeo-m
x ! X 5
& 0.06 4 # 0.06 4 & 0.06 4
) q ) 4 o o
3 / 8 / g /
© 4 ° <
Z A @ / Z o
o
0,00 sormemmiiviteresmeisste?™ 0.00  orsressmirersmprmnitt?’ 0,00 sébusisarmememiironst?™™
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Coverage Coverage Coverage

M components

N components

) Calibration: align the
outputs with the true

posterior probs

|
Input Layer Hidden Layers Output Layer
(e.g., convolutional, rectified linear, ...)



Signed dist to the separating }

Our margin-based scores hyperplane

Binary SVMs: f(a;) =wlae+b Geometric margin: y(wTx +b)/\|w\|;

MulticlasssvMs:  f(x) = WTx 4+ b

w,; T + by wix + b;
. . = max
Geometric margin: ”wy’Hz gl B ||wj||2
Confidence margin: (w;,a} +by) — ie{lmaﬁ}\y/ (w]x + b;)

These scores are not affected by the logit

scaling

Difference of dists between the
two nearest hyperplanes




Our margin-based scores

Geometric margin:

M components N components fw;m + by’ fw;a; —+ bj
— max — T
|wy ||, je{t. KNy |lwjll,

Confidence margin:

wl,x+b,)— w]x +b;
(0, v) (L KNy (o )

Input Layer Hidden Layers Output Layer

(e.g., convolutional, rectified linear, ...) Apply them to the RLS Z

Benefit.: We don't need to worry about the scale of 2



Additional benefit; robustness

o= SRmax SRdactor
SRent =/t Rl—geo -M
RLmax Spost
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On real_ data ImageNet vs ImageNet-C
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Outline

e Evaluation of adversarial robustness

Optimization and Optimizers for Adversarial Robustness https.//arxiv.org/abs/2303.13401

e Fundamental challenges in evaluating & achieving robustness

Optimization and Optimizers for Adversarial Robustness https:.//arxiv.org/abs/2303.13401

e Selective prediction

Margin As An Effective Confidence Score For Selective Classification Under Distribution Shifts
(Forthcoming)

e Closing


https://arxiv.org/abs/2303.13401
https://arxiv.org/abs/2303.13401

Closing

e Alongwayto
go for DL
robustness

e Seclective
prediction
crucial for
deploying
imperfect Al




