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Traditional methods

Inverse problem: giveny = f(x), recover x
min £(y, f(x)) + A R(x) RegFit
X\ N
data fitting regularizer

Challenges:

1)  Which ¢? (e.g., unknown/compound noise)

) Which R? (e.g., structures not amenable to math description)
) Global optimization — esp. for nonlinear IPs

) Convergence speed of iterative numerical methods
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How has deep learning (DL)
changed the story?



DL methods: the radical way

Inverse problem: giveny = f(x), recover X

Learn the f~! with a training set {(y;, x;)}

input layer

hidden layer 1 hidden layer 2



DL methods: the middle way

Inverse problem: giveny = f(x), recover X

min (3, 70 + A RO pogr

data fitting regularizer

Recipe: revamp numerical methods for RegFit with pretrained/trainable
DNNs



DL methods: the middle way

Algorithm unrolling

If R proximal friendly

min /(y, f(x)) + A R(x)
X N— e

data fitting regularizer,

K= Pt T F(x)E (y, £x))

Idea: make Pr trainable, using {(Xz 3 yz)}

Eg.
Uy, f(x)) = lly — Ax|3 ,

initialization
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Fig credit: Deep Learning Techniques for Inverse Problems in Imaging https:/arxiv.org/abs/2005.06001



https://arxiv.org/abs/2005.06001

DL methods: the middle way
min {(y, f(x)) + A R(x)
X N — N——

data fitting regularizer

Using{x;} only

Plug-and-Play

x" = Pr(xf — V' (x5 (y, f(x)))

E.g.replace Pr with pretrained denoiser

Deep generative models

Pretraining X; =~ Ge (Zz) Vi
Deployment: mzin f(y, fo GH(Z)) + AR o Gy (Z)



DL methods: a survey

Deep Learning Techniques
for Inverse Problems in Imaging

Gregory Ongie; Ajil Jalal! Christopher A. Metzler*
Richard G. Baraniuk! Alexandros G. DimakisY Rebecca Willett!

April 2020

Abstract

Recent work in machine learning shows that deep neural networks can be used to solve
a wide variety of inverse problems arising in computational imaging. We explore the central
prevailing themes of this emerging area and present a taxonomy that can be used to categorize
different problems and reconstruction methods. Our taxonomy is organized along two central
axes: (1) whether or not a forward model is known and to what extent it is used in training
and testing, and (2) whether or not the learning is supervised or unsupervised, i.e., whether or
not the training relies on access to matched ground truth image and measurement pairs. We
also discuss the tradeoffs associated with these different reconstruction approaches, caveats
and common failure modes, plus open problems and avenues for future work.

Focuses on linear
iInverse problems,

e, f linear
https://arxiv.org/abs/2005.06001

See also: Model-based
deep learning
hitps:.//arxiv.org/abs/20

12.08405
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DL methods: the economic (radical) way

Deep image prior (DIP) x =~ Gy (2z) Gy (and 2) trainable
min {(y, f(x)) + A R(x)
X N\ ——
data fitting regularizer No extra training
| data!
mgn Uy, foGs(z)) + AR o Gy(z)

Ulyanov et al. Deep image prior. IJCV'20. https.//arxiv.org/abs/1711.10925

In other words, deep reparametrization

In the same vein, neural implicit representations (PINNs in applied math)


https://arxiv.org/abs/1711.10925

Focus here: end-to-end methods

input layer
hidden layer 1 hidden layer 2



A striking experiment
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Why “more is less’ here? Ferward symmetry: {+/V, =V} <y

Implies: on dense training set, very close
y's can mapped to very far aways x's
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Remedy:
symmetry breaking
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A slightly more complicated example

y = |AX|2 A :iid Gaussian

Forward symmetry: global sign

y = |Ax[” = [A(—x)[’

(Gaussian phase retrieval)

After Symmetry Breaking

Before Symmetry Breaking

Dim| Sample DNN K-NN DNN K-NN
5 2ed 4.08 11.82 85.37 68.26
5ed 2.20 9.41 90.51 66.58
le5 1.30 7.98 96.66 66.18
0.37 4.71 12271 65.08
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Symmetry-breaking principle

Symmetry breaking: a preprocessing step on the training set
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Finding the smallest, connected, representative set



A realistic example: far-field phase retrleval
plane-wave CDI  *

(Fraunhofer PR)
= | F(X)[?
9, 9@
o
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Algorithm 2 Procedure of symmetry breaking for FPR

Input: Forward mapping f(X) = |.Z(X)|* and randomlv sam- On tralnlng set

pled input data points D = {X ;} C CN1 XN, T SiSPRNet

Output: Symmetry breaking training dataset

I: Centering the nonzero content inside X ;’s in tt Sample Before‘ After Before‘ After
put space. This heuristically breaks 2D translati 500 0.1341 0.0219 0.1525 0.0270
2: Taking the oversampled Fourier transform of X 1000 0.0665 0.0236 0.1474 0.0212
3: Decompose each element of 2" into polar form: 1500 0.0672 0.0215 0.0701 0.0199
p(ky.ky)e'®k1:k2) with the phase Q(k;.ky) = ¢! > — — : -
4: Breaking symmetry in the phase domain with 5000 0.0360 0.0187 0.0463 0.0147
gorithm @ described below.
5: while X ; € D do ® as the following: On test set
6: Performing global phase transfer to make -
5 if Q(1,2) € S, then Sample Before After Before " After
8: Q(ky,ky) « Q(ky.kz) 500 0.12 10A 0.0448 0.1412 0.0426
9 elseif(1,2) £S5, then 1000 | 0.1057 0.0460 0.1389 0.0357
10: Q(ky,kz) + Q(k1,k2)
1 end if 1500 0.1056 0.0385 0.0733 0.0336
12: end while 5000 0.0580 0.0326 0.0568 0.0255
13: Applying forward mapping f on each point X ; and torm

a new training set {(|.§“(Xj)|2-,xj)}.~ which is a symmetry More is nOt l,ess

breaking set.




Why we dont quite feel the pain?
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In practice, we're in data-sparse regime



But gain in performance is real and substantial

On training set

UNet SiSPRNet
Sample Before After Before After
500 0.1341 0.0219 0.1525 0.0270
1000 0.0665 0.0236 0.1474 0.0212
1500 0.0672 0.0215 0.0701 0.0199
5000 0.0360 0.0187 0.0463 0.0147

On test set

UNet SiSPRNet
Sample Before After Before After
500 0.1210 0.0448 0.1412 0.0426
1000 0.1057 0.0460 0.1389 0.0357
1500 0.1056 0.0385 0.0733 0.0336
5000 0.0580 0.0326 0.0568 0.0255




Focus here: end-to-end methods
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e Forward symmetries in nonlinear IPs can
hurt/ruin end-to-end DL methods
e Symmetry-breaking always benefits no matter

data-rich or data-poor
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