

Deep Learning with Nontrivial Constraints

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities Mar 23, 2024

E 2024 INFORMS Optimization Society Conference

Three fundamental questions in DL

Approximation: is it powerful, i.e., the H large enough for all possible weights?

- **Optimization**: how to solve
$$\min_{\boldsymbol{w}_i's, \boldsymbol{b}_i's} \frac{1}{n} \sum_{i=1}^n \ell \left[\boldsymbol{y}_i, \left\{ \mathsf{NN}\left(\boldsymbol{w}_1, \dots, \boldsymbol{w}_k, b_1, \dots, b_k \right) \right\} (\boldsymbol{x}_i) \right]$$

- Generalization: does the learned NN work well on "similar" data?

Isn't it solved?

Base class

CLASS torch.optim.Optimizer(params, defaults) [SO

Base class for all optimizers.

• WARNING

Parameters need to be specified as collections consistent between runs. Examples of objects and iterators over values of dictionaries.

Parameters:

- params (iterable) an iterable of to Tensors should be optimized.
- defaults (dict): a dict containing c
 when a parameter group doesn't specified

	Algorithms					
	Adadelta	Implements Adadelta algorithm.				
	Adagrad	Implements Adagrad algorithm.				
Adamax		Implements Adamax algorithm (a variant of Adam based on infinity norm).				
ASGD		Implements Averaged Stochastic Gradient Descent.				
LBFGS		Implements L-BFGS algorithm, heavily inspired by minFunc.	lgorithm			
NAdam		Implements NAdam algorithm.				
RAdam		Implements RAdam algorithm.				
			J			

When DL meets constraints

Artificial neural networks

used to approximate nonlinear functions

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } g(\boldsymbol{x}) \leq \boldsymbol{0}$$

largely "unsolved"

An imaginary chat between a PhD student working in deep learning (**DLP**) and a PhD student working in optimization (**OP**)

- DLP: Man, I've solved a constrained DL problem recently
- OP: Oh, that's a hard problem
- DLP: Really? I actually did it
- OP: How?
- DLP: My problem is $\min_x f(x)$, s.t. $g(x) \le 0$. I put g(x) as a penalty and then call ADAM
- OP: Are you sure it works?
- DLP: Yes, the performance is improved and my paper is published at ICML
- OP: Why don't you try augmented Lagrangian methods?
- DLP: No implementation in Pytorch. Is it possible we work out some theory about my method?
- OP: I think it's hard. It's not convex

Outline

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

DL with simple constraints

Embedding constraints into DL models

$$\boldsymbol{z} \mapsto \left[\frac{e^{z_1}}{\sum_j e^{z_j}}, \dots, \frac{e^{z_p}}{\sum_j e^{z_j}}\right]^{\mathsf{T}}$$

Softmax

Nonnegativity and summed to 1

DL with nontrivial constraints

- Robustness evaluation
- Imbalanced learning
- Topology optimization

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He¹, Ryan Devera¹, Wenjie Zhang¹, Ying Cui², Zhaosong Lu³ and Ju Sun¹ ¹Computer Science and Engineering, University of Minnesota ²Industrial Engineering and Operations Research, University of California, Berkeley ³Industrial and Systems Engineering, University of Minnesota {he000233, dever120, zhan7867}@umn.edu, yingcui@berkeley.edu, {zhaosong, jusun}@umn.edu

Robustness evaluation (RE)

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. https://arxiv.org/abs/2303.13401

Projected gradient descent (PGD) for RE

$$\min_{\mathbf{x} \in \mathcal{Q}} f(\mathbf{x})$$
 Step size
$$\mathbf{x}_{k+1} = P_{\mathcal{Q}} \Big(\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k) \Big)$$

 $P_{\mathcal{Q}}(\mathbf{x}_0) = rg\min_{\mathbf{x}\in\mathcal{Q}}rac{1}{2}\|\mathbf{x}-\mathbf{x}_0\|_2^2$ Projection operator

Key hyperparameters:

(1) step size(2) iteration number

Ref https://angms.science/doc/CVX/CVX_PGD.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020 https://arxiv.org/pdf/2003.01690.pdf

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t. } d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon \;, \quad \boldsymbol{x}' \in [0, 1]^n \end{split}$$

Algorithm 1 APGD

1: Input: $f, S, x^{(0)}, \eta, N_{\text{iter}}, W = \{w_0, \dots, w_n\}$ 2: Output: x_{max} , f_{max} 3: $x^{(1)} \leftarrow P_S \left(x^{(0)} + \eta \nabla f(x^{(0)}) \right)$ 4: $f_{\max} \leftarrow \max\{f(x^{(0)}), f(x^{(1)})\}$ 5: $x_{\max} \leftarrow x^{(0)}$ if $f_{\max} \equiv f(x^{(0)})$ else $x_{\max} \leftarrow x^{(1)}$ 6: for k = 1 to $N_{\text{iter}} - 1$ do 7: $z^{(k+1)} \leftarrow P_S(x^{(k)} + \eta \nabla f(x^{(k)}))$ 8: $x^{(k+1)} \leftarrow P_{\mathcal{S}} \left(x^{(k)} + \alpha (z^{(k+1)} - x^{(k)}) \right)$ $+(1-\alpha)(x^{(k)}-x^{(k-1)})$ if $f(x^{(k+1)}) > f_{\max}$ then $x_{\max} \leftarrow x^{(k+1)}$ and $f_{\max} \leftarrow f(x^{(k+1)})$ 10. 11: end if if $k \in W$ then 12: if Condition 1 or Condition 2 then 13. $\eta \leftarrow \eta/2 \text{ and } x^{(k+1)} \leftarrow x_{\max}$ 14: end if 15: end if 16. 17: end for

Problem with projected gradient descent

 $\max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right)$ s.t. $d(\boldsymbol{x}, \boldsymbol{x}') \leq \varepsilon$, $\boldsymbol{x}' \in [0, 1]^n$

Tricky to set: iteration number & step size i.e., tricky to decide where to stop

Ref Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020 https://arxiv.org/pdf/2003.01690.pdf

Robustness evaluation: penalty methods for complicated d (perceptual attack)

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t. } d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon \;, \quad \boldsymbol{x}' \in [0, 1]^n \end{split}$$

 $\begin{array}{ll} d(\boldsymbol{x},\boldsymbol{x}') \doteq \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{x}')\|_2 & \quad \mathsf{perceptual} \\ \mathrm{where} & \phi(\boldsymbol{x}) \doteq [\; \widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x}) \;] & \quad \mathsf{distance} \end{array}$

Projection onto the constraint is complicated

Penalty methods

$$\max_{\widetilde{\mathbf{x}}} \qquad \mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max\left(0, \|\phi(\widetilde{\mathbf{x}}) - \phi(\mathbf{x})\|_2 - \epsilon\right)$$

```
Solve it for each fixed \lambda and then increase \lambda
```

Algorithm 2 Lagrangian Perceptual Attack (LPA) 1: procedure LPA(classifier network $f(\cdot)$, LPIPS distance $d(\cdot, \cdot)$, input x, label y, bound ϵ) $\lambda \leftarrow 0.01$ 2: $\widetilde{\mathbf{x}} \leftarrow \mathbf{x} + 0.01 * \mathcal{N}(0, 1)$ ▷ initialize perturbations with random Gaussian noise 3: for i in $1, \ldots, S$ do \triangleright we use S = 5 iterations to search for the best value of λ 4: for t in $1, \ldots, T$ do 5: $\triangleright T$ is the number of steps $\Delta \leftarrow \nabla_{\widetilde{\mathbf{x}}} \left[\mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max\left(0, d(\widetilde{\mathbf{x}}, \mathbf{x}) - \epsilon\right) \right]$ \triangleright take the gradient of (5) 6: $\hat{\Delta} = \Delta / \|\Delta\|_2$ ▷ normalize the gradient 7: $\eta = \epsilon * (0.1)^{t/T}$ \triangleright the step size η decays exponentially 8: $m \leftarrow d(\widetilde{\mathbf{x}}, \widetilde{\mathbf{x}} + h\hat{\Delta})/h$ $\triangleright m \approx$ derivative of $d(\tilde{\mathbf{x}}, \cdot)$ in the direction of $\hat{\Delta}$; h = 0.19: $\widetilde{\mathbf{x}} \leftarrow \widetilde{\mathbf{x}} + (\eta/m)\hat{\Delta}$ 10: \triangleright take a step of size η in LPIPS distance 11: end for 12: if $d(\widetilde{\mathbf{x}}, \mathbf{x}) > \epsilon$ then $\lambda \leftarrow 10\lambda$ \triangleright increase λ if the attack goes outside the bound 13: end if 14: 15: end for 16: $\widetilde{\mathbf{x}} \leftarrow \mathsf{PROJECT}(d, \widetilde{\mathbf{x}}, \mathbf{x}, \epsilon)$ 17: return $\tilde{\mathbf{x}}$ 18: end procedure

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C., Singla, S., & Feizi, S. https://arxiv.org/abs/2006.12655

Problem with penalty methods

	cross-entropy loss		margin loss	
Method	Viol. (%) ↓	Att. Succ. (%) ↑	Viol. (%) ↓	Att. Succ. (%) ↑
Fast-LPA	73.8	3.54	41.6	56.8
LPA	0.00	80.5	0.00	97.0
PPGD	5.44	25.5	0.00	38.5
PWCF (ours)	0.62	93.6	0.00	100

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t.} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right) &\leq \varepsilon \ , \quad \boldsymbol{x}' \in [0, 1]^n \\ d(\boldsymbol{x}, \boldsymbol{x}') &\doteq \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{x}')\|_2 \\ \text{where} \quad \phi(\boldsymbol{x}) &\doteq [\ \widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x}) \] \end{split}$$

LPA, Fast-LPA: penalty methods PPGD: Projected gradient descent

Penalty methods tend to encounter large constraint violation (i.e., infeasible solution, known in optimization theory) or suboptimal solution PWCF, an optimizer with a principled stopping criterion on stationarity& feasibility

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv:2303.13401.

Outline

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

JAX: Autograd and XLA

O PyTorch

For unconstrained DL problems

Convex optimization solvers and frameworks

Modeling languages

SDPT³ - a M_{MLM} software package for semidefinite-quadratic-linear programming

K. C. Toh, R. H. Tütüncü, and M. J. Todd.

TFOCS: Templates for First-Order Conic Solvers

Solvers

Not for DL, which involves NCVX optimization

Note: Gurobi can handle certain NCVX problems

Manifold optimization

Manopt.jl

McTorch Lib, a manifold optimization library for deep learning

Only for differentiable manifolds constraints

General constrained optimization

IPOPT

ensmallen flexible C++ library for efficient numerical optimization

Interior-point methods

Augmented Lagrangian methods

TensorFlow Constrained Optimization (TFCO)

Lagrangian-method-based constrained optimization

Specialized ML packages

Problem-specific solvers that **cannot be easily extended** to new formulations

Outline

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

Issues with typical CDL methods

projected gradient descent

 $\min_{\mathbf{x}\in\mathcal{Q}}f(\mathbf{x})$

$$\mathbf{x}_{k+1} = P_{\mathcal{Q}}\Big(\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)\Big)$$

Issue: no principled stopping criterion/step size rules

Lagrangian method

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} f(\boldsymbol{x}) + \boldsymbol{\lambda}^{\mathsf{T}} g(\boldsymbol{x})$$

Idea: alternating minimize $oldsymbol{x}$ and maximize $oldsymbol{\lambda}$ via gradient descent

penalty methods

 $\begin{array}{ll} \min_{\boldsymbol{x}} \ f(\boldsymbol{x}) & \text{s.t. } g(\boldsymbol{x}) \leq \boldsymbol{0} \\ \min_{\boldsymbol{x}} \ f(\boldsymbol{x}) + \lambda \max(0,g(\boldsymbol{x})) \\ & \text{Solved with increasing } \boldsymbol{\lambda}_{\perp} \text{ sequence} \\ & \text{Issue: infeasible solution} \end{array}$

Issues

- Infeasible solution
- Slow convergence

Want

- Feasible &
 - stationary solution
- Reasonable speed

Principled answers to these questions

• Feasible & stationary solution

Stationarity and feasibility check: KKT condition

• Reasonable speed

Line search

• A hidden problem: nonsmoothness

Armijo (Sufficient Decrease) Condition

Key algorithm

Nonconvex, nonsmooth, constrained

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}), \hspace{0.1cm} ext{s.t.} \hspace{0.1cm} c_i(oldsymbol{x})\leq 0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{I}; \hspace{0.1cm} c_i(oldsymbol{x})=0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{E}.$$

Penalty sequential quadratic programming (P-SQP)

$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \quad \mu(f(x_k) + \nabla f(x_k)^{\mathsf{T}} d) + e^{\mathsf{T}} s + \frac{1}{2} d^{\mathsf{T}} H_k d$$

s.t. $c(x_k) + \nabla c(x_k)^{\mathsf{T}} d \leq s, \quad s \geq 0,$

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Algorithm highlights

Steering strategy for the penalty parameter

If feasibility improvement is insufficient : $l_{\delta}(d_k; x_k) < c_{\nu}v(x_k)$

Stationarity based on (approximate) gradient sampling

$$G_k := \begin{bmatrix} \nabla f(x^k) & \nabla f(x^{k,1}) & \cdots & \nabla f(x^{k,m}) \end{bmatrix}$$
$$\min_{\lambda \in \mathbb{R}^{m+1}} \frac{1}{2} \| G_k \lambda \|_2^2$$
s.t. $\mathbb{1}^T \lambda = 1, \ \lambda \ge 0$

Direction at **m**

Gradient sampling direction

- Principled stopping criterion and line search, to obtain a **solution with certificate** (stationarity & feasibility check)
- Quasi-newton style method for fast convergence, i.e., reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Limitations of GRANSO GRANSO

;

% Gradient of inner product with respect to A
f_grad = imag((conj(Bty)*Cx.')/(y'*x));
f_grad = f_grad(:);

% Gradient of inner product with respect to A ci_grad = real((conj(Bty)*Cx.')/(y'*x)); ci_grad = ci_grad(:);

analytical gradients required

р	=	<pre>size(B,2);</pre>
m	=	<pre>size(C,1);</pre>
х	=	<pre>reshape(x,p,m)</pre>

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

 \Rightarrow impossible to do deep learning with GRANSO

vector variables only

GRANSO meets PyTorch

GRA / SO + O PyTorch

C 0 ± 4 Home NCVX PyGRANSO Documentation NCVX $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), ext{ s.t. } c_i(\mathbf{x}) \leq 0, orall i \in \mathcal{I}; \ c_i(\mathbf{x}) = 0, orall i \in \mathcal{E}$ Q Search the docs Introduction Installation Settings **NCVX** Package problems Examples

NCVX: A General-Purpose Optimization Solver for **Constrained Machine and Deep Learning**

Buyun Liang, Tim Mitchell, Ju Sun

First general-purpose solver for constrained DL

Outline

- What and how for CDL
- Why CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

Example 1: Support Vector Machine (SVM)

Soft-margin SVM

$$\min_{\boldsymbol{w},b,\zeta} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \zeta_i$$

s.t. $y_i \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \ge 1 - \zeta_i, \ \zeta_i \ge 0 \ \forall i = 1, ..., n$

m

```
def comb fn(X struct):
    # obtain optimization variables
    w = X \text{ struct.} w
    b = X \text{ struct.} b
    zeta = X struct.zeta
    # objective function
    f = 0.5*w.T@w + C*torch.sum(zeta)
    # inequality constraints
    ci = pygransoStruct()
    ci.c1 = 1 - zeta - y^*(x_{0w+b})
    ci.c2 = -zeta
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variables
var in = {"w": [d,1], "b": [1,1], "zeta": [n,1]}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

Binary classification (odd vs even digits) on MNIST dataset

Example 2: Robustness—min formulation

$$\begin{split} \min_{\boldsymbol{x}'} & d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} & \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ & \boldsymbol{x}' \in [0, 1]^n \end{split}$$

def comb fn(X struct): # obtain optimization variables x prime = X struct.x prime # objective function f = d(x, x prime)# inequality constraints ci = pygransoStruct() f theta all = f theta(x prime) fy = f theta all[:,y] # true class output # output execpt true class fi = torch.hstack((f theta all[:,:y],f theta all[:,y+1:])) ci.cl = fy - torch.max(fi) ci.c2 = -x primeci.c3 = x prime-1# equality constraint ce = Nonereturn [f.ci.ce] # specify optimization variable (tensor) var in = {"x prime": list(x.shape)} # pygranso main algorithm soln = pygranso(var in,comb fn)

CIFAR10 dataset

Compared with FAB [iterative constraint linearization + projected gradient] https://github.com/fra31/auto-attack

$$\min_{\boldsymbol{x}'} \quad d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} \quad \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \ge f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ \boldsymbol{x}' \in [0, 1]^{n}$$

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack

L2 attack

Linf attack

https://ncvx.org/

Many others

Documentation				
Q Search the docs				
Introduction				
Installation				
Settings	~			
Examples	^			
Rosenbrock				
Eigenvalue Optimization				
Dictionary Learning				
Nonlinear Feasibility Problem				
Sphere Manifold				
Trace Optimization				
Robust PCA				
Generalized LASSO				
Logistic Regression				
LeNet5				
Perceptual Attack				
Orthogonal RNN				
Lighlighto	V			

NCVX PyGRANSO Documentation

Home

4

NCVX

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

The initial release of NCVX contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. As a highlight, PyGRANSO can solve general constrained deep learning problems, the first of its kind.

53

Highlights

Closing

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He¹, Ryan Devera¹, Wenjie Zhang¹, Ying Cui², Zhaosong Lu³ and Ju Sun¹

¹Computer Science and Engineering, University of Minnesota
²Industrial Engineering and Operations Research, University of California, Berkeley
³Industrial and Systems Engineering, University of Minnesota
{he000233, dever120, zhan7867}@umn.edu, yingcui@berkeley.edu, {zhaosong, jusun}@umn.edu

Thanks to all contributors

Prof. Tim Mitchell (CS, Queens Col.)

Prof. Ying Cui (IEOR, UC Berkely)

Prof. Qizhi He (CSGE, UMN)

Prof. Zhaosong Lu (CSGE, UMN)

Dr. Chuan He (CS&E, UMN)

Thanks to all contributors

Buyun Liang (CSE U Penn; Formally, CS&E, UMN)

Ryan de Vera (CS&E, UMN)

Hengyue Liang (ECE, UMN)

Wenjie Zhang (CS&E, UMN)

Yash Travadi (CS&E, UMN)

Le Peng (CS&E, UMN)