Al4Science: Striking the Best Data-Knowledge Tradeoff Ju Sun (Computer Sci. & Eng., UMN) Apr 30, 2024 Al₄Science Seminar Series, AWS

Deep learning models are data monsters

Credit: On the Opportunities and Risks of Foundation Models

https://arxiv.org/abs/2108.07258

LLMs

	Model	Release Time	Size (B)	Base Model	Ad IT	aptation RLHF	Pre-train Data Scale	Latest Data Timestamp	Hardware (GPUs / TPUs)	Training Time	Eval ICL	uation CoT
	TE [20]	Out 2010	11				1T tokono	Ame 2010	1024 TPU		/	
	13 02 mTE [92]	Oct-2019	12			-	1T tokens	Apr=2019	1024 IFU V3	-	*	-
	Dan Cru a 1941	Amr 2021	12#	-	-	-	1 1 TD	-	2018 A	-	*	-
	CPM 2 95	Apr-2021	109	-	-	-	1.11D	-	2046 Ascend 910		*	-
	CFN-2 00	Jun-2021	190	TE	-	-	2.01D	-	512 TRU - 2	27 1	-	-
	CadaCan 86	Mag 2022	16	15	*		E77P takana		512 11 0 45	27 11	*	
	CDT New Y 20P [97]	Amr 2022	20	-		-	977D TOKETIS	-	06 40C A100		*	-
	GF 1-INEOA-20D 107	Apr-2022	20	777	-	-	823GD	-	26 40G A100	1.	*	-
	IK-Instruct [00]	Apr-2022	20	15	~	-	1T tologo	- A 2010	250 TFU V5	4 N	*	-
	OPT 600	May-2022	175	-	-	-	10 tokens	Apr-2019	512 IFU V4	-	*	v
	OPT 90	May-2022	1/5	-	-	-	180D tokens	-	992 80G A100	-	*	-
	NLLB 91	Jui-2022	54.5	-	-	-		-	1500 1 1010	- 1	*	-
	CodeGeex 92	Sep-2022	13	-	-		850B tokens	-	1536 Ascend 910	60 d	*	-
	GLM 93	Oct-2022	130	-	-	-	400B tokens	-	768 40G A100	60 a	*	-
	Flan-15 69	Oct-2022	11	15	~	-	-	-			¥.	~
	BLOOM 78	Nov-2022	176	-		-	366B tokens	-	384 80G A100	105 d	×.	-
	mT0 94	Nov-2022	13	mT5	~	-	-	-	-	-	×.	-
	Galactica 35	Nov-2022	120	-		-	106B tokens	-	-	-	~	~
	BLOOMZ 94	Nov-2022	176	BLOOM	~	-	-	-	-	-	~	-
Publicly	OPT-IML 95	Dec-2022	175	OPT	~	-		-	128 40G A100		~	~
Available	LLaMA 57	Feb-2023	65	-	-	-	1.4T tokens	-	2048 80G A100	21 d	~	
	Pythia 96	Apr-2023	12	-	- 1	-	300B tokens	-	256 40G A100	-	~	-
	CodeGen2 97	May-2023	16	-	-	-	400B tokens	-		-	1	-
	StarCoder 98	May-2023	15.5	~	-	-	1T tokens	-	512 40G A100	-	1	~
	LLaMA2 99	Jul-2023	70		1	~	2T tokens	-	2000 80G A100		1	
	Baichuan2 100	Sep-2023	13	-	1	~	2.6T tokens	-	1024 A800	-	1	-
	QWEN 101	Sep-2023	14	-	1	~	3T tokens	-	-	-	1	-
	FLM 102	Sep-2023	101	-	1		311B tokens	-	192 A800	22 d	1	1.0
	Skywork 103	Oct-2023	13	-	-	-	3.2T tokens	-	512 80G A800	-	1	-

Credit: A Survey of Large Language Models https://arxiv.org/abs/2303.18223

Towards Geospatial Foundation Models via Continual Pretraining

Matías Mendieta^{1*} Boran Han² Xingjian Shi³ Yi Zhu³ Chen Chen¹ ¹ Center for Research in Computer Vision, University of Central Florida ² Amazon Web Services ³ Boson AI

	r	-8				
	Method	# Images	Epochs	$ARP \uparrow$	Time \downarrow	$\text{CO}_2\downarrow$
	ImageNet-22k Sup.	14M	-	0.0	-	-
	Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2
	GeoPile	600k	200	0.92	133.3	19.0
RASA AN	GeoPile [†]	600k	200	1.24	133.3	19.0
	GeoPile [†]	600k	800	1.45	533.2	76.0
Figure 2. We visualize som datasets with Sentinel-2 (le noticeably much lower feat	GFM	600k	100	3.31	93.3	13.3
across images than that of	our Georne pretraining dataset.					

Not all fields are as lucky

Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine Learning?

The central question for this thrust is "which knowledge should be leveraged in SciML, and how should this knowledge be included?" Any answers will naturally depend on the SciML task and computational budgets, thus mirroring standard considerations in traditional scientific computing.

Hard Constraints. One research avenue involves incorporation of domain knowledge through imposition of constraints that cannot be violated. These hard constraints could be enforced during training, replacing what typically is an unconstrained optimization problem with a constrained one. In general, such constraints could involve simulations or highly nonlinear functions of the training parameters. Therefore, there is a need to identify particular cases when constraint qualification conditions can be ensured as these conditions are necessary regularity conditions for constrained optimization [57–59]. Although incorporating constraints during training generally makes maximal use of training data, there may be additional opportunities to employ constraints at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying the objective function (soft constraints) used in training. It is understood that ML loss function selection should be guided by the task and data. Therefore, opportunities exist for developing loss functions that incorporate domain knowledge and analyzing the resulting impact on solvability

BASIC RESEARCH NEEDS FOR Scientific Machine Learning

Core Technologies for Artificial Intelligence

Ref https://www.osti.gov/servlets/purl/1478744

Domain-Aware Scientific Machine Learning

There's no free lunch!

Typically, #data points we need grow exponentially with respect to dimension (i.e., curse of dimensionality)

This talk:

several stories about data-knowledge tradeoffs

- Scientific inverse problems (SIPs)
 - Data-driven (data-rich) methods for SIPs
 - Single-instance (data-poor) methods for SIPs
- Principled computational tool for data-knowledge tradeoffs

Scientific Inverse Problems

Inverse problems

Inverse problem: given $\mathbf{y}\,=\,f(\mathbf{x})$, recover \mathbf{x}

Image denoising

Image super-resolution

3D reconstruction

MRI reconstruction

Coherent diffraction imaging (CDI)

Traditional methods

Inverse problem: given $\mathbf{y} = f(\mathbf{x})$, recover \mathbf{x}

$$\min_{\mathbf{x}} \underbrace{\ell(\mathbf{y}, f(\mathbf{x}))}_{\text{data fitting}} + \lambda \underbrace{R(\mathbf{x})}_{\text{regularizer}} \quad \mathsf{RegFit}$$

Limitations:

- Which ℓ ? (e.g., unknown/compound noise)
- Which R? (e.g., structures not amenable to math description)
- Speed

DL methods for SIPs: the radical way

Inverse problem: given $\mathbf{y} = f(\mathbf{x})$, recover \mathbf{x} Learn the f^{-1} with a training set $\{(\mathbf{y}_i, \mathbf{x}_i)\}$

Limitations:

- Wasteful: not using f
- Representative data?
- Not always straightforward (see, e.g., Tayal et al. Inverse
 Problems, Deep Learning, and Symmetry Breaking. https://arxiv.org/abs/2003.09077)

Why "more is less" here? Forward symmetry: $\{+\sqrt{y}, -\sqrt{y}\} \leftrightarrow y$

Original

Dataset

16 -4 Highly oscillatory target function to learn by DNNs—difficult

Forward

 $(\cdot)^2$

Implies: on dense training set, very close y's can mapped to very far aways x's different by signs

Remedy: symmetry breaking

Fix all signs to be positive

A slightly more complicated example

 $\mathbf{y} = |\mathbf{A}\mathbf{x}|^2 \quad \mathbf{A}$: iid Gaussian

(Gaussian phase retrieval)

Forward symmetry: global sign $\mathbf{y} = |\mathbf{A}\mathbf{x}|^2 = |\mathbf{A}(-\mathbf{x})|^2$

		After Syn	nmetry Breaking	Before Symm	netry Breaking
Dim	Sample	DNN	K-NN	DNN	K-NN
5	2e4	4.08	11.82	85.37	68.26
Ī	5e4	2.20	9.41	90.51	66.58
Ī	1e5	1.30	7.98	96.66	66.18
. [1e6	0.37	4.71	122.71	65.08
101	2.4	More	is more	Môrê is	less

Symmetry-breaking principle

Symmetry breaking: a preprocessing step on the training set

Finding the smallest, connected, representative set

[Submitted on 18 Mar 2024]

What is Wrong with End-to-End Learning for Phase Retrieval?

Wenjie Zhang, Yuxiang Wan, Zhong Zhuang, Ju Sun

For nonlinear inverse problems that are prevalent in imaging science, symmetries in the forward model are common. When data-driven deep learning approaches are used to solve such problems, these intrinsic symmetries can cause substantial learning difficulties. In this paper, we explain how such difficulties arise and, more importantly, how to overcome them by preprocessing the training set before any learning, i.e., symmetry breaking. We take far-field phase retrieval (FFPR), which is central to many areas of scientific imaging, as an example and show that symmetric breaking can substantially improve data-driven learning. We also formulate the mathematical principle of symmetry breaking.

DL methods for SIPs: the middle way

Inverse problem: given $\mathbf{y} = f(\mathbf{x})$, recover \mathbf{x}

Recipe: revamp numerical methods for RegFit with **pretrained/trainable DNNs**

DL methods for SIPs: the middle way

Algorithm unrolling

If R proximal friendly

$$\mathbf{x}^{k+1} \,=\, \mathcal{P}_Rig(\mathbf{x}^k\,-\,\eta
abla^ op fig(\mathbf{x}^kig)\ell'ig(\mathbf{y},\,f(\mathbf{x}^k)ig)ig)$$

<u>Idea</u>: make \mathcal{P}_R trainable, using $\{(\mathbf{x}_i, \mathbf{y}_i)\}$

Fig credit: Deep Learning Techniques for Inverse Problems in Imaging https://arxiv.org/abs/2005.06001

DL methods for SIPs: the middle way Using $\{\mathbf{x}_i\}$ only $\begin{array}{l} \min_{\mathbf{x}} \ell(\mathbf{y}, f(\mathbf{x})) + \lambda \quad \mathbf{R}(\mathbf{x}) \\ \text{data fitting} \quad \text{regularizer} \end{array}$

Plug-and-Play

$$\mathbf{x}^{k+1} \,=\, \mathcal{P}_Rig(\mathbf{x}^k\,-\,\eta
abla^ op fig(\mathbf{x}^kig)\ell'ig(\mathbf{y},\,f(\mathbf{x}^k)ig)ig)$$

E.g. replace \mathcal{P}_R with pretrained denoiser

Deep generative models

DL methods for SIPs: a survey

Deep Learning Techniques for Inverse Problems in Imaging

Gregory Ongie^{*}, Ajil Jalal[†], Christopher A. Metzler[‡] Richard G. Baraniuk[§], Alexandros G. Dimakis[¶], Rebecca Willett[∥]

April 2020

Abstract

Recent work in machine learning shows that deep neural networks can be used to solve a wide variety of inverse problems arising in computational imaging. We explore the central prevailing themes of this emerging area and present a taxonomy that can be used to categorize different problems and reconstruction methods. Our taxonomy is organized along two central axes: (1) whether or not a forward model is known and to what extent it is used in training and testing, and (2) whether or not the learning is supervised or unsupervised, i.e., whether or not the training relies on access to matched ground truth image and measurement pairs. We also discuss the tradeoffs associated with these different reconstruction approaches, caveats and common failure modes, plus open problems and avenues for future work. Focuses on **linear** inverse problems, i.e., *f* linear

https://arxiv.org/abs/2005.06001

Limitations of middle ways:

- Representative data?
- Algorithm-sensitive
 - Good initialization? (e.g., Manekar et al. Deep Learning Initialized Phase Retrieval.

https://sunju.org/pub/NIPS20-WS-DL4F PR.pdf)

Deep generative models

Story II: Don't be too Bayesian

$$\begin{array}{ll} {}_{\mathsf{Pretraining:}} \ \mathbf{x}_{i} \ \approx \ G_{\theta}\left(\mathbf{z}_{i}\right) \ \forall \, i \\ \\ {}_{\mathsf{Deployment:}} \ \min_{\mathbf{z}} \ \ell(\mathbf{y}, \, f \circ G_{\theta}(\mathbf{z})) \ + \ \lambda R \ \circ G_{\theta}\left(\mathbf{z}\right) \end{array}$$

Noise

Fixed forward diffusion process

Generative reverse denoising process

How to use pretrained diffusion models for SIPs?

Data

Bayesian thinking

Reverse SDE for DM

$$d\boldsymbol{x} = \left[-\frac{\beta(t)}{2}\boldsymbol{x} - \beta(t)\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)\right]dt + \sqrt{\beta(t)}d\bar{\boldsymbol{w}}$$

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t | \boldsymbol{y}) = \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y} | \boldsymbol{x}_t)$$

Reverse conditional SDE for SIPs

$$d\boldsymbol{x} = \left[-\frac{\beta(t)}{2}\boldsymbol{x} - \beta(t)(\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t))\right] dt + \sqrt{\beta(t)} d\bar{\boldsymbol{w}}$$

Bayesian thinking: after several approx steps

Figure 2: Probabilistic graph. Black solid line: tractable, blue dotted line: in-tractable in general.

Algorithm 1 DPS - Gaussian **Require:** N, y, $\{\zeta_i\}_{i=1}^N, \{\tilde{\sigma}_i\}_{i=1}^N$ 1: $\boldsymbol{x}_N \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ 2: for i = N - 1 to 0 do 3: $\hat{s} \leftarrow s_{\theta}(\boldsymbol{x}_i, i)$ 4: $\hat{\boldsymbol{x}}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_i}} (\boldsymbol{x}_i + (1 - \bar{\alpha}_i)\hat{\boldsymbol{s}})$ 5: $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ 6: $x'_{i-1} \leftarrow \frac{\sqrt{\alpha_i}(1-\bar{\alpha}_{i-1})}{1-\bar{\alpha}_i} x_i + \frac{\sqrt{\bar{\alpha}_{i-1}}\beta_i}{1-\bar{\alpha}_i} \hat{x}_0 + \tilde{\sigma}_i z$ $oldsymbol{x}_{i-1} \leftarrow oldsymbol{x}_{i-1}' - \zeta_i
abla_{oldsymbol{x}_i} \|oldsymbol{y} - \mathcal{A}(\hat{oldsymbol{x}}_0)\|_2^2$ 7: 8: end for 9: return $\hat{\mathbf{x}}_0$

Credit: Diffusion Posterior Sampling for General Noisy Inverse Problems <u>https://openreview.net/forum?id=OnDgzGAGTok</u>

Explained in one picture (vs. our plugin idea)

Feasibility crisis

Preliminary result on linear SIPs

Table 1: (Linear IPs) Quantitative comparison for super-resolution and inpainting on CelebA [25] and FFHQ [34] with additional Gaussian noise ($\sigma = 0.01$). (Bold: best, <u>under</u>: second best, green: performance increase, red: performance decrease)

	Super-resolution (4 \times)						Inpainting (Random 70%)					
	CelebA (256×256)			FFH	Q (256 ×	256)	Celeb	CelebA (256 \times 256) FFHQ (256 \times			256)	
	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑
ADMM-PnP [39]	0.217	26.99	0.808	0.229	26.25	0.794	0.091	31.94	0.923	0.104	30.64	0.901
DMPS [40]	0.070	28.89	0.848	0.076	28.03	0.843	0.297	24.52	0.693	0.326	23.31	0.664
DDRM 🖽]	0.226	26.34	0.754	0.282	25.11	0.731	0.185	26.10	0.712	0.201	25.44	0.722
MCG 🛄	0.725	19.88	0.323	0.786	18.20	0.271	1.283	10.16	0.049	1.276	10.37	0.050
ILVR [4]	0.322	21.63	0.603	0.360	20.73	0.570	0.447	15.82	0.484	0.483	15.10	0.450
DPS [18]	0.087	28.32	0.823	0.098	27.44	0.814	0.043	32.24	0.924	0.046	30.95	0.913
ReSample [9]	0.080	28.29	0.819	0.108	25.22	0.773	0.039	30.12	0.904	0.044	27.91	0.884
Ours	0.067	31.25	0.878	0.079	30.25	0.871	0.039	34.03	0.936	0.038	33.01	0.931
Ours vs. Best compe.	-0.003	+2.36	+0.030	+0.003	+2.22	+0.028	-0.000	+1.79	+0.012	-0.006	+2.06	+0.018

Preliminary result on nonlinear SIPs

Table 3: (Nonlinear IP) Quantitative comparison for BID on CelebA [23] and FFHQ [34] with additional Gaussian noise ($\sigma = 0.01$). (Bold: best, <u>under</u>: second best, green: performance increase, red: performance decrease)

	CelebA (256 \times 256)					FFHQ (256 × 256)						
	Motion				Gaussian	L	Motion				Gaussian	
	LPIPS↓	PSNR↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM↑
SelfDeblur [43]	0.568	16.59	0.417	0.579	16.55	0.423	0.628	16.33	0.408	0.604	16.22	0.410
DeBlurGANv2 [44]	0.313	20.56	0.613	0.350	24.29	0.743	0.353	19.67	0.581	0.374	23.58	0.726
Stripformer [43]	0.287	22.06	0.644	0.316	25.03	0.747	0.324	21.31	0.613	0.339	24.34	0.728
MPRNet [46]	0.332	20.53	0.620	0.375	22.72	0.698	0.373	19.70	0.590	0.394	22.33	0.685
Pan-DCP [47]	0.606	15.83	0.483	0.653	20.57	0.701	0.616	15.59	0.464	0.667	20.69	0.698
Pan- ℓ_0 [48]	0.631	15.16	0.470	0.654	20.49	0.675	0.642	14.43	0.443	0.669	20.34	0.671
ILVR [4]	0.398	19.23	0.520	0.338	21.20	0.588	0.445	18.33	0.484	0.375	20.45	0.555
BlindDPS [13]	0.164	23.60	0.682	0.173	25.15	0.721	0.185	21.77	0.630	0.193	23.83	0.693
Ours	0.104	29.61	0.825	0.140	28.84	0.795	0.135	27.99	0.794	0.169	28.26	0.811
Ours vs. Best compe.	-0.060	+6.01	+0.143	-0.033	+3.69	+0.048	-0.050	+6.22	+0.164	-0.024	+3.92	+0.083

Am I supposed/allowed to show this?

DMPlug: A Plug-in Method for Solving Inverse Problems with Diffusion Models

Anonymous Author(s) Affiliation Address email

DL methods for SIPS: the **economic** way

Ulyanov et al. Deep image prior. IJCV'20. https://arxiv.org/abs/1711.10925

Contrasting: Deep generative models

DIP's cousin(s)

Deep image prior (DIP)

 $\mathbf{x} pprox G_{ heta}\left(\mathbf{z}
ight) = G_{ heta}$ (and \mathbf{z}) trainable

Idea: (visual) objects as continuous functions

Neural implicit representation (NIR)

 $\mathbf{x} \approx \mathcal{D} \circ \overline{\mathbf{x}} \qquad \mathcal{D}: ext{discretization} \quad \overline{\mathbf{x}}: ext{ continuous function}$

Physics-informed neural networks (PINN)

Figure credit: https://www.nature.com/articles/s42254-021-00314-5

NIR for 3D rendering and view synthesis

https://www.matthewtancik.com/nerf

Story III: We benefit from DL even with a single data point

Blind image deblurring (BID)

Given $\boldsymbol{y}_{\text{,}}$ recover \boldsymbol{x} (and/or \boldsymbol{k})

Also Blind Deconvolution

Landmark surveys

- 1996: Kundur and Hatzinakos. Blind image deconvolution. <u>https://doi.org/10.1109/79.489268</u>
- 2011: Levin et al. **Understanding blind deconvolution algorithms**. <u>https://doi.org/10.1109/TPAMI.2011.148</u>
- 2012: Kohler et al. Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. <u>https://doi.org/10.1007/978-3-642-33786-4_3</u>
- 2016: Lai et al. A comparative study for single image blind deblurring. https://doi.org/10.1109/CVPR.2016.188
- 2021: Koh et al. Single image deblurring with neural networks: A comparative survey https://doi.org/10.1016/j.cviu.2020.103134
- 2022: Zhang et al. Deep image blurring: A survey https://doi.org/10.1007/s11263-022-01633-5

See also: Awesome Deblurring https://github.com/subeeshvasu/Awesome-Deblurring

Key challenge of data-driven approach:

obtaining sufficiently expressive data (Koh et al'21. Zhang et al'22)

Untouched practical questions

Key question addressed in this paper: How do we solve blind image deblurring without knowing: (1) the size of the blur kernel, (2) the type and level of noise, and (3) whether it is blur / noise only or both ?

Idea: parameterize both ${f k}$ and ${f x}$ as DIPs

- CNN + CNN (Wang et al'19, <u>https://doi.ieeecomputersociety.org/10.1109/ICCVW.2019.00127;</u> Tran et al'21, <u>https://arxiv.org/abs/2104.00317</u>)
- MLP + CNN (SelfDeblur; Ren et al'20, <u>https://arxiv.org/abs/1908.02197</u>)

Still problematic with

1) kernel size over-specification 2) substantial noise

A glance of our modifications

 $\begin{array}{c} \text{Over-specify}_k \\ \text{Over-specify}_X \\ k \text{~half of the image sizes} \end{array}$

Handle bounded shift

 $\ell_1/\ell_2 \operatorname{vs} \ell_1$

Table 1: ℓ_1/ℓ_2 vs TV for noise: mean and (std).

	Low	Level	High Level			
	PSNR λ		PSNR	λ		
$\frac{L1}{L2}$	32.64 (0.69)	0.0001 (0.018)	27.74 (0.23)	0.0002 (0.0019)		
ΤĪ	31.12 (0.52)	0.002 (0.07)	$24.34_{(0.78)}$	0.02 (0.10)		

SelfDeblur vs our method

Clean

SelfDeblur

Blurry and noisy

Ours

Clean

Blurry and noisy

SelfDeblur

Ours

Real world results

Difficult cases

1) High depth contrast
 2) High brightness contrast

Outperform SOTA data-driven methods!

Breakthroughs in imaging

Coherent Diffraction Imaging

Bragg Coherent Diffraction Imaging

Our

HIO+ER with Shrinkwrap

blurry and noisy image

Mostly due to optical deficiencies (e.g., defocus) and motions

Given $\boldsymbol{y},$ recover \boldsymbol{x} (and/or k)

Also Blind Deconvolution

First PR method that won in a double-blind test, and systematic evaluation, beating a 40-years old legacy

Practical Phase Retrieval Using Double Deep Image Priors

Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun

First BID method that works with unknown kernel size AND substantial noise

Blind Image Deblurring with Unknown Kernel Size and Substantial Noise

Zhong Zhuang, Taihui Li, Hengkang Wang, Ju Sun

Related papers

- Li et al. Self-Validation: Early Stopping for Single-Instance Deep Generative Priors (BMVC'21) <u>https://arxiv.org/abs/2110.12271</u>
- Wang et al. Early Stopping for Deep Image Prior https://arxiv.org/abs/2112.06074 (TMLR'23)
- Zhuang et al. Blind Image Deblurring with Unknown Kernel Size and Substantial Noise. <u>https://arxiv.org/abs/2208.09483</u> (IJCV'24)
- Zhuang et al. **Practical Phase Retrieval Using Double Deep Image Priors**. <u>https://arxiv.org/abs/2211.00799</u> (Electronic Imaging'24)
- Li et al. Deep Random Projector: Toward Efficient Deep Image Prior. (CVPR'23)

Data-driven methods for SIPs

Principled data-knowledge tradeoff

Knowledge

Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine Learning?

The central question for this thrust is "which knowledge should be leveraged in SciML, and how should this knowledge be included?" Any answers will naturally depend on the SciML task and computational budgets, thus mirroring standard considerations in traditional scientific computing.

Hard Constraints. One research avenue involves incorporation of domain knowledge through imposition of constraints that cannot be violated. These hard constraints could be enforced during training, replacing what typically is an unconstrained optimization problem with a constrained one. In general, such constraints could involve simulations or highly nonlinear functions of the training parameters. Therefore, there is a need to identify particular cases when constraint qualification conditions can be ensured as these conditions are necessary regularity conditions for constrained optimization [57–59]. Although incorporating constraints during training generally makes maximal use of training data, there may be additional opportunities to employ constraints at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying the objective function (soft constraints) used in training. It is understood that ML loss function selection should be guided by the task and data. Therefore, opportunities exist for developing loss functions that incorporate domain knowledge and analyzing the resulting impact on solvability

BASIC RESEARCH NEEDS FOR Scientific Machine Learning Core Technologies for Artificial Intelligence

Ref https://www.osti.gov/servlets/purl/1478744

Domain-Aware Scientific Machine Learning

When DL meets constraints

Artificial neural networks

used to approximate nonlinear functions

GAPS

Constrained optimization

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } g(\boldsymbol{x}) \leq \boldsymbol{0}$$

largely "unsolved"

An imaginary chat between a PhD student working in deep learning (**DLP**) and a PhD student working in optimization (**OP**)

- DLP: Man, I've solved a constrained DL problem recently
- OP: Oh, that's a hard problem
- DLP: Really? I actually did it
- OP: How?
- DLP: My problem is $\min_x f(x)$, s.t. $g(x) \le 0$. I put g(x) as a penalty and then call ADAM
- OP: Are you sure it works?
- DLP: Yes, the performance is improved and my paper is published at ICML
- OP: Why don't you try augmented Lagrangian methods?
- DLP: No implementation in Pytorch. Is it possible we work out some theory about my method?
- OP: I think it's hard. It's not convex

DL with nontrivial constraints: many pitfalls

- Robustness evaluation
- Imbalanced learning
- Topology optimization

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He¹, Ryan Devera¹, Wenjie Zhang¹, Ying Cui², Zhaosong Lu³ and Ju Sun¹ ¹Computer Science and Engineering, University of Minnesota ²Industrial Engineering and Operations Research, University of California, Berkeley ³Industrial and Systems Engineering, University of Minnesota {he000233, dever120, zhan7867}@umn.edu, yingcui@berkeley.edu, {zhaosong, jusun}@umn.edu

Robustness evaluation: penalty methods for complicated d (perceptual attack)

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t. } d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon \;, \quad \boldsymbol{x}' \in [0, 1]^n \end{split}$$

 $\begin{array}{ll} d(\boldsymbol{x},\boldsymbol{x}') \doteq \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{x}')\|_2 & \quad \mathsf{perceptual} \\ \mathrm{where} & \phi(\boldsymbol{x}) \doteq [\; \widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x}) \;] & \quad \mathsf{distance} \end{array}$

Projection onto the constraint is complicated

Penalty methods

$$\max_{\widetilde{\mathbf{x}}} \qquad \mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max\left(0, \|\phi(\widetilde{\mathbf{x}}) - \phi(\mathbf{x})\|_2 - \epsilon\right)$$

```
Solve it for each fixed \lambda and then increase \lambda
```

Algorithm 2 Lagrangian Perceptual Attack (LPA) 1: procedure LPA(classifier network $f(\cdot)$, LPIPS distance $d(\cdot, \cdot)$, input x, label y, bound ϵ) $\lambda \leftarrow 0.01$ 2: $\widetilde{\mathbf{x}} \leftarrow \mathbf{x} + 0.01 * \mathcal{N}(0, 1)$ ▷ initialize perturbations with random Gaussian noise 3: for i in $1, \ldots, S$ do \triangleright we use S = 5 iterations to search for the best value of λ 4: for t in $1, \ldots, T$ do 5: $\triangleright T$ is the number of steps $\Delta \leftarrow \nabla_{\widetilde{\mathbf{x}}} \left[\mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max\left(0, d(\widetilde{\mathbf{x}}, \mathbf{x}) - \epsilon\right) \right]$ \triangleright take the gradient of (5) 6: $\hat{\Delta} = \Delta / \|\Delta\|_2$ ▷ normalize the gradient 7: $\eta = \epsilon * (0.1)^{t/T}$ \triangleright the step size η decays exponentially 8: $m \leftarrow d(\widetilde{\mathbf{x}}, \widetilde{\mathbf{x}} + h\hat{\Delta})/h$ $\triangleright m \approx$ derivative of $d(\tilde{\mathbf{x}}, \cdot)$ in the direction of $\hat{\Delta}$; h = 0.19: $\widetilde{\mathbf{x}} \leftarrow \widetilde{\mathbf{x}} + (\eta/m)\hat{\Delta}$ 10: \triangleright take a step of size η in LPIPS distance 11: end for 12: if $d(\widetilde{\mathbf{x}}, \mathbf{x}) > \epsilon$ then $\lambda \leftarrow 10\lambda$ \triangleright increase λ if the attack goes outside the bound 13: end if 14: 15: end for 16: $\widetilde{\mathbf{x}} \leftarrow \mathsf{PROJECT}(d, \widetilde{\mathbf{x}}, \mathbf{x}, \epsilon)$ 17: return $\tilde{\mathbf{x}}$ 18: end procedure

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C., Singla, S., & Feizi, S. https://arxiv.org/abs/2006.12655

Problem with penalty methods

	cross-e	entropy loss	margin loss			
Method	Viol. (%) ↓	Att. Succ. (%) ↑	Viol. (%) ↓	Att. Succ. (%) ↑		
Fast-LPA	73.8	3.54	41.6	56.8		
LPA	0.00	80.5	0.00	97.0		
PPGD	5.44	25.5	0.00	38.5		
PWCF (ours)	0.62	93.6	0.00	100		

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t.} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right) &\leq \varepsilon \ , \quad \boldsymbol{x}' \in [0, 1]^n \\ d(\boldsymbol{x}, \boldsymbol{x}') &\doteq \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{x}')\|_2 \\ \text{where} \quad \phi(\boldsymbol{x}) &\doteq [\ \widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x}) \] \end{split}$$

LPA, Fast-LPA: penalty methods PPGD: Projected gradient descent

Penalty methods tend to encounter large constraint violation (i.e., infeasible solution, known in optimization theory) or suboptimal solution PWCF, an optimizer with a principled stopping criterion on stationarity& feasibility

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv:2303.13401.

Key algorithm

Nonconvex, nonsmooth, constrained

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}), \hspace{0.1cm} ext{s.t.} \hspace{0.1cm} c_i(oldsymbol{x})\leq 0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{I}; \hspace{0.1cm} c_i(oldsymbol{x})=0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{E}.$$

Penalty sequential quadratic programming (P-SQP)

$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \quad \mu(f(x_k) + \nabla f(x_k)^{\mathsf{T}} d) + e^{\mathsf{T}} s + \frac{1}{2} d^{\mathsf{T}} H_k d$$

s.t. $c(x_k) + \nabla c(x_k)^{\mathsf{T}} d \leq s, \quad s \geq 0,$

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Algorithm highlights

Steering strategy for the penalty parameter

If feasibility improvement is insufficient : $l_{\delta}(d_k; x_k) < c_{\nu}v(x_k)$

Stationarity based on (approximate) gradient sampling

$$G_k := \begin{bmatrix} \nabla f(x^k) & \nabla f(x^{k,1}) & \cdots & \nabla f(x^{k,m}) \end{bmatrix}$$
$$\min_{\lambda \in \mathbb{R}^{m+1}} \frac{1}{2} \| G_k \lambda \|_2^2$$
s.t. $\mathbb{1}^T \lambda = 1, \ \lambda \ge 0$

Direction at **m**

Gradient sampling direction

- Principled stopping criterion and line search, to obtain a **solution with certificate** (stationarity & feasibility check)
- Quasi-newton style method for fast convergence, i.e., reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Limitations of GRANSO GRANSO

;

% Gradient of inner product with respect to A
f_grad = imag((conj(Bty)*Cx.')/(y'*x));
f_grad = f_grad(:);

% Gradient of inner product with respect to A ci_grad = real((conj(Bty)*Cx.')/(y'*x)); ci_grad = ci_grad(:);

analytical gradients required

р	=	<pre>size(B,2);</pre>
m	=	<pre>size(C,1);</pre>
х	=	<pre>reshape(x,p,m)</pre>

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

 \Rightarrow impossible to do deep learning with GRANSO

vector variables only

GRANSO meets PyTorch

GRA / SO + O PyTorch

C 0 ± 4 Home NCVX PyGRANSO Documentation NCVX $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), ext{ s.t. } c_i(\mathbf{x}) \leq 0, orall i \in \mathcal{I}; \ c_i(\mathbf{x}) = 0, orall i \in \mathcal{E}$ Q Search the docs Introduction Installation Settings **NCVX** Package problems Examples

NCVX: A General-Purpose Optimization Solver for **Constrained Machine and Deep Learning**

Buyun Liang, Tim Mitchell, Ju Sun

First general-purpose solver for constrained DL

Example 1: Support Vector Machine (SVM)

Soft-margin SVM

$$\min_{\boldsymbol{w},b,\zeta} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \zeta_i$$

s.t. $y_i \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \ge 1 - \zeta_i, \ \zeta_i \ge 0 \ \forall i = 1, ..., n$

m

```
def comb fn(X struct):
    # obtain optimization variables
    w = X \text{ struct.} w
    b = X \text{ struct.} b
    zeta = X struct.zeta
    # objective function
    f = 0.5*w.T@w + C*torch.sum(zeta)
    # inequality constraints
    ci = pygransoStruct()
    ci.c1 = 1 - zeta - y^*(x_{0w+b})
    ci.c2 = -zeta
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variables
var in = {"w": [d,1], "b": [1,1], "zeta": [n,1]}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

Binary classification (odd vs even digits) on MNIST dataset

Example 2: Robustness—min formulation

$$\begin{split} \min_{\boldsymbol{x}'} & d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} & \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ & \boldsymbol{x}' \in [0, 1]^n \end{split}$$

def comb fn(X struct): # obtain optimization variables x prime = X struct.x prime # objective function f = d(x, x prime)# inequality constraints ci = pygransoStruct() f theta all = f theta(x prime) fy = f theta all[:,y] # true class output # output execpt true class fi = torch.hstack((f theta all[:,:y],f theta all[:,y+1:])) ci.cl = fy - torch.max(fi) ci.c2 = -x primeci.c3 = x prime-1# equality constraint ce = Nonereturn [f.ci.ce] # specify optimization variable (tensor) var in = {"x prime": list(x.shape)} # pygranso main algorithm soln = pygranso(var in,comb fn)

CIFAR10 dataset

Compared with FAB [iterative constraint linearization + projected gradient] https://github.com/fra31/auto-attack

$$\min_{\boldsymbol{x}'} \quad d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} \quad \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \ge f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ \boldsymbol{x}' \in [0, 1]^{n}$$

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack

L2 attack

Linf attack

https://ncvx.org/

Many others

Documentation	
Q Search the docs	
Introduction	
Installation	
Settings	~
Examples	^
Rosenbrock	
Eigenvalue Optimization	
Dictionary Learning	
Nonlinear Feasibility Problem	
Sphere Manifold	
Trace Optimization	
Robust PCA	
Generalized LASSO	
Logistic Regression	
LeNet5	
Perceptual Attack	
Orthogonal RNN	
Lighlighto	V

NCVX PyGRANSO Documentation

Home

4

NCVX

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

The initial release of NCVX contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. As a highlight, PyGRANSO can solve general constrained deep learning problems, the first of its kind.

53

Highlights

Data-driven methods for SIPs

A (the?) tool for DL with nontrivial constraints

GRANSO + O'PyTorch

C 0 ± 4 Home NCVX PyGRANSO Documentation $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), ext{ s.t. } c_i(\mathbf{x}) \leq 0, orall i \in \mathcal{I}; \ c_i(\mathbf{x}) = 0, orall i \in \mathcal{E}$ Q Search the docs Introduction Installation First general-purpose solver for constrained DL Settings NCVX Package problems Examples

NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun